Dr. Marques Sophie Office 519 Algebra II

Fall Semester 2013 marques@cims.nyu.edu

Problem Set
$$\# 11$$

Due Wednesday december 4th in recitation

Exercise 1

Expand $(x + i^k y, x + i^k y) = ||x + i^k y||^2$ to verify the polarization identities.

Exercise 2

Let $T: V \to W$ be a linear operator between finite-dimensional inner product spaces and let $\mathcal{X} = \{e_i\}, \mathcal{Y} = \{f_i\}$ be ON bases. Prove that $[T]_{\mathcal{YX}}$ has entries

$$T_{ij} = (T_{e_i}, f_i)_W = (f_i, T(e_j))_W, \text{ for } 1 \le i \le \dim_K(W), 1 \le j \le \dim_K(V)$$

Exercise 4

- 1. Let $V = V_1 \oplus ... \oplus V_r$ be a direct sum of orthogonal subspaces of an inner product space (so $V_i \perp V_j$, for $i \neq j$). Prove that
 - (a) $V_i \perp (\sum_{j \neq i} V_j)$ for each i;

(b)
$$||v||^2 = \sum_i ||v_i||^2$$
 if $v = v_1 + \dots + v_r$ with $v_i \in V_i$.

2. Show that M^{\perp} is again a subspace of V, and that

$$M_1 \subseteq M_2 \Rightarrow M_2^{\perp} \subseteq M_1^{\perp}$$

Exercise 6 (Gram-Schmidt construction)

- 1. Let v_1, \ldots, v_n be independent vectors in an inner product space and let $M_k = K Span\{v_1, \ldots, v_k\}$, for $k = 1, 2, \ldots, n$. Via an inductive algorithm, construct orthonormal vectors e_1, \ldots, e_n such that
 - (a) $e_k \in K Span\{v_1, ..., v_k\};$
 - (b) K-Span $\{e_1, ..., e_n\} = K$ -Span $\{v_1, ..., v_n\}$.

The result is an orthonormal basis $\{e_1, ..., e_n\}$ for M = K-Span $\{v_1, ..., v_n\}$.

2. Consider $\mathcal{C}[-1, 1]$ together with the inner product $(f, h) = \int_{-1}^{1} f(t)\overline{h(t)}dt$. Take $v_1 = 1, v_2 = x, v_2 = x, v_3 = x^2$ regarded as functions $f : [-1, 1] \to \mathbb{C}$. Find the orthonormal set $\{e_1, e_2, e_3\}$ produced by Gram-Schmidt algorithm described in the previous question.

Exercise 5 (Fourier series))

1. Consider $\mathcal{C}[0,1]$ together with respect to the inner product $(f,h) = \int_0^1 f(t)\overline{h(t)}dt$. Define $e_n(t) = e^{2\pi i n t}$ $(n \in \mathbb{Z})$ Prove that $\{e_n\}$ is a orthonormal set.

Exercise 6

If $\{e_i\}$ is orthonormal, and $p_M(v) = \sum_{i=1}^N (v, e_i)e_i$ the projection of v onto $M = K - Span\{e_1, ..., e_N\}$ along M^{\perp} . Prove that the following geometric property holds

$$p_M(v) =$$
 the point in M closest to v in the sense that
 $||p_M(v) - v|| = min\{||u - v|| |u \in M\}$

for any $v \in V$. In particular the minimum is achieved at a unique point $p_M(v) \in M$.